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Abstract. The covariant canonical method of quantization based on the De Donder–Weyl covariant canon-
ical formalism is used to formulate a world-sheet covariant quantization of bosonic strings. To provide the
consistency with the standard non-covariant canonical quantization, it is necessary to adopt a Bohmian de-
terministic hidden-variable equation of motion. In this way, string theory suggests a solution to the problem
of measurement in quantum mechanics.
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1 Introduction

String theory [1–3] is a theory with an ambition to be the
theory of everything. However, there is one fundamental
problem on which, so far, string theory has had nothing
new to say. This is the problem of the interpretation of
quantum mechanics (QM), or, in more physical terms, the
problem of measurement in QM. From this point of view,
it is widely believed that it does not matter whether one
quantizes a particle, a field, or a string; the formalism of
quantization is, essentialy, always the same, so the inter-
pretation adopted, say, for particles, should work equally
well (or badly) for fields or strings. Although the recent
progress in understanding the phenomenon of decoherence
shed much light on the problem of measurement in QM,
this problem is still considered unsolved [4]. In this paper,
however, we argue that string theory offers a new insight
into the problem of interpretation/measurement in QM,
an insight that cannot be inferred from the quantization
of a particle. Since strings, unlike particles, are extended
objects, the requirement of world-sheet covariance leads
to a non-trivial relation between the σ0-dependence and
the σ1-dependence of the string coordinatesXα(σ0, σ1). In
order to preserve the world-sheet covariance at the quan-
tum level, we argue that the classical covariantDe Donder–
Weyl canonical formalism (see e.g. [5, 6] and references
therein) might be a good starting point. The appropriate
quantum formalism is developed in [7] for fields. In particu-
lar, the formalism attributes a new status to the Bohmian
deterministic hidden-variable interpretation of QM [8–14],
because, in [7], the Bohmian equations of motion for fields
are derived from the requirement of spacetime covariance.
By replacing the requirement of spacetime covariance for
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fields with that of world-sheet covariance for strings, in this
paper we observe that a completely analogous argument
leads to the Bohmian formulation of quantum strings. (In
the Bohmian interpretation, the quantum string coordi-
nates Xα(σ0, σ1) evolve in a deterministic manner even
when they are not measured.) Thus, in contrast to particle
physics where the Bohmian deterministic interpretation is
just one of many interpretations of QM, we argue that in
string theory the Bohmian interpretation emerges natu-
rally from the requirement of world-sheet covariance.
To further motivate the analysis presented in the sub-

sequent sections, it is worthwhile to explain the concep-
tual difference between the physical meaning of the re-
sults obtained in [7] and that of the present paper. For
that purpose, we need to recapitulate the concepts of par-
ticles, fields and strings in a somewhat wider context. In
non-string theories, quantum fields are often viewed in two
different ways. The prevailing point of view among “hard-
core” field theorists is that fields are the only fundamental
objects, while particles are merely emergent objects that
sometimes even cannot be well defined (see e.g. [15–18]).
On the other hand, particle-physics phenomenologists are
more willing to view pointlike particles as the fundamen-
tal objects, while the field is often viewed among them
merely as a calculational tool convenient for treating in-
teractions in which the number of particles changes. In-
deed, there exists an alternative string-inspired particle-
scattering formalism that completely avoids any referring
to fields [19]. In string theory, the situation is similar, but
with a difference consisting of the fact that most of the
work in string theory is done without referring to string-
field theory. Moreover, there are indications that string-
field theory might not be the correct way to treat string
interactions [20]. Thus, from the string-theory perspective,
particles might be more fundamental objects than fields.
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In the context of the Bohmian hidden-variable inter-
pretation of QM, the field-or-particle dilemma is even
sharper than in the conventional interpretation. Should
the Bohmian interpretation be applied to particles, to
fields, or to both? Since the conventional probabilistic in-
terpretation cannot be applied to the relativistic Klein–
Gordon equation, the Bohmian deterministic interpreta-
tion of relativistic quantum particles might be a natu-
ral choice with interesting measurable predictions [21, 22].
However, a derivation of the Bohmian interpretation from
the requirement of relativistic covariance based on the De
Donder–Weyl formalism [7] works for fields, but not for
particles. Thus, if particles are more fundamental objects
than fields, then the results of [7] might be physically ir-
relevant and we still cannot derive the Bohmian interpre-
tation. However, now comes string theory to save the situ-
ation. If particles are more fundamental than fields, but
if they are not really pointlike, but extended objects as
in string theory, then the results of [7] can be applied.
In this case, the Bohmian interpretation of strings can be
derived from the requirement of world-sheet covariance,
while the resulting string theory in a pointlike-particle
limit reduces to the Bohmian interpretation of relativistic
quantum particles.
The classical De Donder–Weyl formalism for bosonic

strings is presented in Sect. 2, while the corresponding
quantum theory of bosonic strings is formulated in Sect. 3.
The case of supersymmetric strings is still beyond our cur-
rent technical achievements.

2 Classical De Donder–Weyl formalism
for bosonic strings

In order to have a notation similar to that in [7], let the
letters α, β = 0, 1, . . . , D−1 denote the target spacetime
indices, and let the letters µ, ν = 0, 1 denote the world-
sheet indices. The signature of the spacetime metric is cho-
sen to be (+,−, . . . ,−). Similarly, on a flat world-sheet we
have η00 =−η11 = 1.We also use the notation σ≡ (σ0, σ1).
With this notation, the action of a bosonic string is

A=

∫
d2σL , (1)

where

L=−
1

2
|h|1/2hµνηαβ(∂µX

α)(∂νX
β) (2)

is the Lagrangian density. Here ηαβ is a flat Minkowski
metric in D dimensions, hµν(σ) is an arbitrary metric on
the string world-sheet, and h is the determinant of hµν .
The spacetime and world-sheet indices are raised (lowered)
by ηαβ (ηαβ) and h

µν (hµν), respectively. By requiring that
the variation of (1) with respect to hµν should vanish, one
obtains that hµν must be proportional to the induced met-
ric on the world-sheet [3], i.e.

hµν(σ) = f(σ)(∂µX
α)(∂νXα) , (3)

where f(σ) is an arbitrary positive-valued function.

The canonical momentum world-sheet vector density is
defined as

Pµα =
∂L

∂(∂µXα)
=−|h|1/2∂µXα . (4)

The covariant De Donder–Weyl Hamiltonian density is
given by the Legendre transform

H= Pµα∂µX
α−L

=−
1

2

hµν

|h|1/2
ηαβPµαP

ν
β . (5)

When (4) is satisfied, thenH= L. The covariant Hamilton
equations of motion are

∂µX
α =

∂H

∂Pµα
, ∂µP

µ
α =−

∂H

∂Xα
. (6)

Using (5), we see that the first equation in (6) is equivalent
to (4). Since H in (5) does not depend on Xα, the second
equation in (6) leads to the covariant string-wave equation

∂µ

(
|h|1/2∂µXα

)
= 0 . (7)

Thus, the classical De Donder–Weyl covariant canonical
formalism is equivalent to the classical Lagrangian for-
malism which also leads to the covariant equation of mo-
tion (6). Similarly, it is also equivalent to the ordinary non-
covariant Hamilton formalism, in which the Hamiltonian
is defined such that only µ= 0 contributes in the first line
of (5).
The next step is to introduce the covariant De Donder–

Weyl Hamilton–Jacobi formalism. We introduce a vector-
density function Sµ(X(σ), σ) that satisfies the De Donder–
Weyl Hamilton–Jacobi equation

H+∂µS
µ = 0 . (8)

HereH is given by (5) with the replacement

Pµα →
∂Sµ

∂Xα
. (9)

The partial derivative ∂µ acts only on the second argument
of Sµ(X(σ), σ). The corresponding total derivative is given
by

dµ = ∂µ+(∂µX
α)
∂

∂Xα
. (10)

For a given solution Sµ(X,σ) of the De Donder–Weyl
Hamilton–Jacobi equation, the σ-dependence of Xα(σ) is
determined by the equation of motion

−|h|1/2∂µXα =
∂Sµ

∂Xα
. (11)

The classical De Donder–Weyl Hamilton–Jacobi for-
malism above has a manifest world-sheet covariance. We
would like to construct an analogous quantum formalism
with a manifest world-sheet covariance at the quantum
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level. It is already known how to construct the quantum
formalism that corresponds to the ordinary non-covariant
Hamilton–Jacobi formalism: by using quantum mechan-
ics represented by the Schrödinger equation. Thus, the
first step towards quantization based on the covariant
De Donder–Weyl Hamilton–Jacobi formalism is to explain
how the ordinary non-covariant Hamilton–Jacobi formal-
ism can be obtained from the covariant one. Choosing
hµν = ηµν , (8) can be written in an explicit form:

−
1

2

∂S0

∂Xα
∂S0

∂Xα
+
1

2

∂S1

∂Xα
∂S1

∂Xα
+∂0S

0+∂1S
1 = 0 . (12)

Using (10) and (11), the last term can be written as

∂1S
1 = d1S

1− (∂1X
α)(∂1Xα) . (13)

Similarly, the second term in (12) can be written as
(1/2)(∂1X

α)(∂1Xα). Now we introduce the quantity

S =

∫
dσ1S0 , (14)

so that

∂S0(X(σ), σ)

∂Xα(σ)
=
δS([X(σ0, σ1)], σ0)

δXα(σ1;σ0)
, (15)

where

δ

δXα(σ1;σ0)
≡

δ

δXα(σ1)

∣∣∣∣
X(σ1)=X(σ)

(16)

is the functional derivative. Thus, by integrating (12) over
dσ1, we obtain the ordinary non-covariant Hamilton–
Jacobi equation

H+∂0S = 0 , (17)

where

H =−

∫
dσ1
[
1

2

δS

δXα(σ1;σ0)

δS

δXα(σ1;σ0)

+
1

2
(∂1X

α)(∂1Xα)

]
(18)

is written for the σ0-dependent string coordinate Xα

(σ0, σ1). The integral of the total derivative
∫
dσ1 d1S1 is

ignored because it is a constant without any physical sig-
nificance. The σ0-evolution ofXα(σ0, σ1) is given by

−∂0Xα(σ
0, σ1) =

δS

δXα(σ1;σ0)
, (19)

which is a consequence of the µ= 0 component of (11). The
covariant constraint (3) implies the non-covariant Hamil-
tonian constraintH = 0 [3].
To anticipate the implications to the quantum case,

here it is crucial to observe the following. First, to de-
rive (17) from (8), it was necessary to use the µ = 1 com-
ponent of (11). Second, if the world-sheet covariance is
required, then the validity of the µ= 1 component of (11)

also implies the validity of the µ = 0 component of (11).
Third, the validity of the µ = 0 component of (11) im-
plies the classical determinism encoded in (19). Thus,
the determinism in classical string theory can be derived
from the world-sheet covariance and the requirement that
the covariant Hamilton–Jacobi equation (8) and the non-
covariant one (17) should be both valid. As we shall see in
the next section, a similar argument leads to a derivation of
the Bohmian deterministic hidden-variable formulation of
quantum strings.

3 Quantization and Bohmian mechanics

How to quantize strings such that the world-sheet covari-
ance is manifest? The standardmethod is the path-integral
quantization based on calculating the generating func-
tional Z =

∫
[dX][dh] exp (iA/h̄). (To avoid an anomaly,

one must fix D = 26 [23].) This method is useful for calcu-
lating Green functions and scattering amplitudes.
Although this is usually sufficient for calculating quan-

tities that are measured in practice, there are also quan-
tities that can be measured in principle but cannot be
calculated in a covariant way from Z. In particular, the
generating functional Z does not describe a quantum state
at a given time. Thus, certain physical information is not
described by the path-integral quantization. In order to ob-
tain such information, one can try to use the σ0-dependent
quantum states Ψ([X(σ1)], σ0) that satisfy the functional
Schrödinger equation

ĤΨ = ih̄∂0Ψ , (20)

where

Ĥ =−

∫
dσ1
[
−h̄2

2

δ

δXα(σ1)

δ

δXα(σ1)

+
1

2
(∂1X

α)(∂1Xα)

]
. (21)

However, not all states satisfying (20) are physical. In par-
ticular, physical states satisfy the Hamiltonian constraint

(Ĥ+a)Ψ = 0 , (22)

where a originates from a constant that can be added to
the action (1) without changing the classical properties of
strings. A more common view of this constant is in terms
of an operator-ordering constant that can be fixed unique-
ly [1–3]. The discussion of the value of a as well as the
discussion of other requirements on physical states re-
lated to the requirement of target spacetime covariance
are beyond the scope of the present paper. We only note
that (22) and (20) imply that all physical states have the
same trivial dependence on σ0, i.e. that Ψ([X(σ1)], σ0) =

Ψ [X(σ1)]eiaσ
0/h̄.

To write (20) and (21), one has to fix a special world-
sheet coordinate σ0. However, any such choice breaks the
world-sheet covariance. To solve this problem, we want
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to find a covariant substitute for the Schrödinger equa-
tion (20). The similarity of the Schrödinger equation (20)
to the non-covariant Hamilton–Jacobi equation (17) sug-
gests that a covariant substitute for (20) might be an equa-
tion similar to the covariant De Donder–Weyl Hamilton–
Jacobi equation (8). Indeed, the general method of quan-
tization based on the De Donder–Weyl Hamilton–Jacobi
equation is developed in [7]. (For a different method, with
problems discussed in [7], see also [24, 25].) Here we apply
the general results of [7] to the case of bosonic strings.
The first step is to write

Ψ =ReiS/h̄ , (23)

where R and S are real functionals. One finds that the
complex equation (20) is equivalent to a set of two real
equations

−

∫
dσ1
[
1

2

δS

δXα(σ1)

δS

δXα(σ1)
+
1

2
(∂1X

α)(∂1Xα)−Q

]

+∂0S = 0, (24)

−

∫
dσ1
[
1

2

δR

δXα(σ1)

δS

δXα(σ1)
−J

]
+∂0R= 0 , (25)

where

Q=
h̄2

2R

δ2R

δXα(σ1)δXα(σ1)
,

J =−
R

2

δ2S

δXα(σ1)δXα(σ1)
. (26)

We see that (24) is very similar to (17) with (18), differing
from it only in containing the additional quantumQ-term.
Now, following [7], we replace the classical De Donder–

Weyl Hamilton–Jacobi equation (8) with the quantum one,

−
1

2

hµν

|h|1/2
ηαβ
dSµ

dXα
dSν

dXβ
+Q+∂µS

µ = 0 . (27)

Here Sµ([X], σ) is a functional of X(σ) and a function of
σ, which incorporates quantum nonlocalities in a covariant
manner. The derivative d/dXα is a generalization of the
derivative ∂/∂Xα, such that the action of the derivative on
nonlocal functionals is well defined [7]. The quantum po-
tential Q is defined as in (26), but with the replacement
δ/δXα→ δ/δCXα. The derivative δ/δCXα is a covariant
version of the derivative (16). The label C denotes a curve
on the world-sheet that generalizes the curve σ0 = constant
in (16). The foliation of the world-sheet into curves C is
induced by the dynamical vector density Rµ([X], σ); the
curves are defined by requiring that Rµ should be orth-
ogonal to the curves at each point σ. The vector densityRµ

satisfies the dynamical equation of motion

−
1

2

hµν

|h|1/2
ηαβ
dRµ

dXα
dSν

dXβ
+J +∂µR

µ = 0 , (28)

where J is defined as in (26) with δ/δXα→ δ/δCXα. The
functionals R and S are defined in a covariant way by

R=

∫
C

dΣµR
µ , S =

∫
C

dΣµS
µ , (29)

where Rµ = |h|−1/2Rµ and Sµ = |h|−1/2Sµ transform as
vectors. In the measure dΣµ = dl nµ, dl is an element of the
invariant length of C, while nµ is a unit vector orthogonal
to C. Note that the second equation in (29) is a covariant
version of (14). The functionals R and S in (29) define the
wave functional Ψ as in (23).
From the covariant formalism above, the non-covariant

Schrödinger equation (20) can be derived as a special case.
Assume that Rµ = (R0, 0), that S1 is a local functional,

and that R0 and S0 are functionals local in the coordinate
σ0 (see [7] for the precise definitions of these notions of lo-
cality!). Then, similarly as in the classical case, by choosing
hµν = ηµν and integrating (27) and (28) over dσ

1, one re-
covers (24) and (25), which, in turn, are equivalent to the
Schrödinger equation (20). (The constant originating from
the integral

∫
dσ1 d1S1 can be absorbed into the constant

a.) Just as in the classical case, to obtain (24) from (27),
it is necessary to assume that a quantum analog of the
µ= 1 component of (11) is valid. The covariance then im-
plies that the µ = 0 component is also valid, so we have
a covariant quantum relation

−|h|1/2∂µXα =
dSµ

dXα
. (30)

The µ = 0 component of (30) implies that the
non-covariant Schrödinger equation (20) should be supple-
mented with (19). In the quantum context, (19) is nothing
but the Bohmian deterministic equation of motion for
the σ0-dependent hidden variable Xα(σ0, σ1). Indeed, by
analogy with the Bohmian interpretation of particles and
fields [8–14], (19) could have been postulated immediately
after writing (20), as an equation that provides a consis-
tent Bohmian deterministic hidden-variable interpretation
of quantum strings. In this interpretation, the wave func-
tion is a physical object which does not “collapse” during
measurements. The nonlocality encoded in the wave func-
tion reflects in a nonlocal quantum potential Q, which
provides nonlocalities needed for a hidden-variable theory
to be consistent with the Bell theorem. In the determinis-
tic Bohmian interpretation, all quantum uncertainties are
an artefact of the ignorance of the actual initial conditions
Xα(σ1) at some initial σ0. For more details on this inter-
pretation, we refer the reader to the seminal work [8] and
reviews [9–12]. Here, however, the crucial equation of the
Bohmian interpretation, (19), is not postulated for inter-
pretational purposes, but derived from the requirement
of world-sheet covariance! To be more precise, we stress
that the covariant quantum (27) and (28) by themselves
do not imply the determinism covariantly encoded in (30).
Instead, the need for the determinism encoded in (30)
emerges from the requirement that these covariant equa-
tions should be compatible with standard non-covariant
canonical quantum equations.
Equations (27) and (30) imply a quantum version of (7),

namely

∂µ(|h|
1/2∂µXα)−

dQ

dXα
= 0 . (31)

The covariant quantum constraint takes the same form as
the classical one (3). (Note that (3) would be meaningless
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in the conventional interpretation of the Schrödinger pic-
ture, that does not attribute a definite dependence on σ0

to Xα.) The non-covariant quantum constraint (22) can
be derived from the covariant one in a similar way as (24)
and (25) are derived from (27) and (28), provided, in add-
ition, that a constant is added to the action and that R0

does not explicitly depend on σ0.
We also note that the constraint (22) in the pointlike-

particle limit reduces to the massless Klein–Gordon equa-
tion, provided that a = 0 in the pointlike-particle limit.
(A heuristic way to obtain a= 0 in the pointlike-particle
limit is to recall [1–3] that, in bosonic string theory, a
turns out to be proportional to

∑∞
n=0 n, which leads to a fi-

nite value after the analytic continuation of the zeta func-
tion. Since n represents the wave-mode number of a string,
only n= 0 contributes in the pointlike-particle limit, which
leads to a= 0.) The Bohmian equation of motion (19) leads
to

dXα
ds
=−

∂S

∂Xα
(32)

in the pointlike-particle limit, where s ≡ σ0. This can be
viewed as a stringy derivation of the relativistic-covariant
Bohmian interpretation of the massless Klein–Gordon
equation, which, in turn, leads to interesting measurable
predictions [22].
Of course, string theory can also describe particles with

arbitrary spin, not by considering the poinlike limit, but
by considering string states Ψ with fixed quantum numbers
that determine the spin (see e.g. [3]). By integrating (19)
over dσ1, one obtains the Bohmian equation of motion (32)
for a particle with an arbitrary integer spin. If bosonic
strings are replaced with superstrings, then the Bohmian
interpretation of half-integer spin particles can also be in-
cluded in the same way. However, we do not know yet how
to formulate the quantum de Donder–Weyl formalism for
supersymmetric strings, so we have not yet been able to de-
rive the Bohmian equation of motion for all spins from the
requirement of world-sheet covariance. Our current tech-
nical achievements allow one only to derive the Bohmian
equation of motion for particles with integer spin.
To summarize, in this paper we have used a new

manifestly covariant canonical method of quantization
developed in [7] to quantize bosonic strings in a way
that provides manifest world-sheet covariance. This new
method of quantization, based on the classical De Donder–
Weyl covariant canonical formalism, is more general than
the standard non-covariant canonical quantization in the
Schrödinger picture. The covariantmethod of quantization
contains the non-covariant one as a special case (see also [7]

for a discussion of this point). From the requirement that
the covariant method of quantization should lead to the
standard non-covariant quantization without violating co-
variance, it turns out that the quantization method should
be supplemented with an equation that corresponds to
the Bohmian deterministic hidden-variable formulation of
QM. Thus, string theory together with the new quantiza-
tion method proposed in [7] offers a new insight into the
problem of interpretation and measurement in QM (an
insight that cannot be inferred from the quantization of

a particle) by deriving the Bohmian interpretation from
the requirement of world-sheet covariance.
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